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Abstract

Behavioral game theory seeks to describe the way actual people (as compared to ide-
alized, “rational” agents) act in strategic situations. Our own recent work has identified
iterative models, such as quantal cognitive hierarchy, as the state of the art for predicting
human play in unrepeated, simultaneous-move games. Iterative models predict that agents
reason iteratively about their opponents, building up from a specification of nonstrategic
behavior called level-0. A modeler is in principle free to choose any description of level-0
behavior that makes sense for a given setting. However, in practice almost all existing
work specifies this behavior as a uniform distribution over actions. In most games it is not
plausible that even nonstrategic agents would choose an action uniformly at random, nor
that other agents would expect them to do so. A more accurate model for level-0 behavior
has the potential to dramatically improve predictions of human behavior, since a substan-
tial fraction of agents may play level-0 strategies directly, and furthermore since iterative
models ground all higher-level strategies in responses to the level-0 strategy. Our work
considers models of the way in which level-0 agents construct a probability distribution
over actions, given an arbitrary game. We considered a large space of alternatives and,
in the end, recommend a model that achieved excellent performance across the board: a
linear weighting of four binary features, each of which is general in the sense that it can be
computed from any normal form game. Adding real-valued variants of the same four fea-
tures yielded further improvements in performance, albeit with a corresponding increase in
the number of parameters needing to be estimated. We evaluated the effects of combining
these new level-0 models with several iterative models and observed large improvements in
predictive accuracy.

1. Introduction

It is well known that the standard game-theoretic assumption that agents will adopt Nash
equilibrium strategies—where each agent responds optimally to all the others—is often
a poor predictor of actual human behavior (e.g., Goeree & Holt, 2001; Camerer, 2003;
Kagel & Roth, 2016). This is a particular problem for researchers building artificially
intelligent systems to interact with humans in strategic settings, such as randomized security
protocols (e.g., Pita et al., 2008; Jain et al., 2010; Yin et al., 2012; Yang et al., 2013) or
negotiation (e.g., Gal & Pfeffer, 2007; Wolpert & Bono, 2013). The field of behavioral game
theory aims to develop models that more accurately describe human strategic behavior, as
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evaluated using experimental data (Camerer, 2003). Our own recent work has identified one
particular model, quantal cognitive hierarchy—an extension of the cognitive hierarchy model
of Camerer, Ho, and Chong (2004)—as the state of the art behavioral model for predicting
human play in unrepeated, simultaneous-move games (Wright & Leyton-Brown, 2012, 2017).
The quantal cognitive hierarchy (QCH) model has two key components. The first component
is quantal response; that is, agents respond stochastically to their incentives—playing high
utility actions with high probability and low utility actions with low probability—rather
than best responding. This expresses the intuition that two actions that yield roughly equal
utilities have a roughly equal chance of being chosen. The second component is iterative
reasoning ; that is, agents do not reason arbitrarily deeply about their opponents’ beliefs
about beliefs about beliefs, but instead start from a simple nonstrategic1 (level-0) behavior,
and then reason for some fixed number of iterations about responses to that starting point
(e.g., a level-2 agent quantally best responds to the combined behaviors of level-1 and level-0
agents).

Thus, in order to make use of a quantal cognitive hierarchy model one must first commit
to a specification of level-0 behavior. Indeed, this is true of iterative models in general, such
as cognitive hierarchy (Camerer et al., 2004) and level-k (Stahl & Wilson, 1994; Nagel, 1995;
Costa-Gomes, Crawford, & Broseta, 2001). There are two key reasons why it is important
to get this specification right. First, there is growing evidence that a substantial fraction of
human players do act nonstrategically (e.g., Burchardi & Penczynski, 2014). Second, the
level-0 model also drives predictions that are made at higher levels: higher-level agents are
assumed to act by responding strategically to lower-level agents’ behavior, grounding out at
level-0. Almost all work in the literature that uses iterative models adopts the specification
that level-0 agents play a uniform distribution over actions. (In Section 5 we discuss the few
exceptions of which we are aware, each of which is based on an explicitly encoded intuition
about a specific setting of interest.) The uniform-distribution approach has the advantage
that it does not require insight into a game’s structure, and hence can be applied to any
game. However, in many games it is not plausible that an agent would choose an action
uniformly at random, nor that any other agent would expect them to do so. For example,
consider a dominated action that always yields very low payoffs for all players.

In this paper we consider the question of how to do better. Specifically, we investi-
gate general rules that can be used to induce a level-0 specification from the normal-form
description of an arbitrary game. In the next section we formally define our setting, and
describe the data, methods, and model that we used in our work. In Section 3 we define
the space of richer level-0 models that we considered. We searched this space in two differ-
ent ways: manually via exhaustive evaluation and automatically via Bayesian optimization.
We explain this methodology in more detail and analyze the resulting models in Section 4.
Notably, we found that richer level-0 models improved performance across all of the itera-
tive models that we considered, even though they were selected based only on their impact
on the performance of the Poisson-QCH model. We briefly survey some related work in
Section 5 before concluding in Section 6.

1. In this work, we consider “strategic” agents to be those whose actions can be described as responses
to beliefs about the behavior of other agents; we call all other agents “nonstrategic.” Please see Sec-
tion 3.2 for a detailed discussion of this distinction. Nonstrategic should not be taken as a synonym for
thoughtless; indeed, some of the level-0 behavior that we describe below is rather sophisticated.
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2. Framework

We focus on unrepeated, simultaneous-move normal-form games. A normal-form game G is
defined by a tuple (N,A, u), where N = {1, . . . , n} is a finite set of agents; A = A1×. . .×An

is the set of possible action profiles; Ai is the finite set of actions available to agent i;
u = {ui}i∈N is a set of utility functions ui : A → R, each of which maps from an action
profile to a utility for agent i. Let ∆(X) denote the set of probability distributions over a
finite set X. Overloading notation, we represent the expected utility of a profile of mixed
strategies s ∈ S = ∆(A1)× . . .×∆(An) by ui(s). By a−i we refer to the joint actions of all
agents except i. Our objective is to find a behavioral model that maps from a game G and a
(human) agent i to a probability distribution over i’s action set Ai that predicts i’s behavior
in G. In this section we first describe a model that we have shown to achieve state-of-the-art
performance in predicting human behavior, Poisson-QCH (Wright & Leyton-Brown, 2017).
We then describe the dataset and methods that we used to learn parameters and evaluate
the performance of extensions to Poisson-QCH.

2.1 Quantal Cognitive Hierarchy

The first key component of the quantal cognitive hierarchy model is quantal best response,
in which errors become less likely as they become more costly. Like most of the behavioral
game theory literature, we use the logit specification of this concept.

Definition 1 (Quantal best response). Let ui(ai, s−i) be agent i’s expected utility when
playing action ai ∈ Ai against mixed strategy profile s−i in game G. Then a quantal best
response QBRi(s−i;G,λ) by agent i to s−i is a mixed strategy si such that

si(ai) =
exp[λ · ui(ai, s−i)]∑

a′i∈Ai
exp[λ · ui(a′i, s−i)]

, (1)

where λ (the precision) represents agents’ sensitivity to utility differences. For a mixed
strategy profile s we sometimes write QBR(s;G,λ) to represent a profile of strategies s′

with s′i = QBRi(s−i;G,λ). We suppress reference to G when it is clear from context.

Unlike classical best response, which is a set-valued function, quantal best response
always returns a single mixed strategy. When λ = 0, quantal response mixes uniformly over
all of the agents’ actions; as λ→∞, quantal best response approaches best response.2

The second key component of the quantal cognitive hierarchy model is iterative response,
in which higher-level agents reason about and respond to lower-level agents. Describing the
distribution of different levels in the population of agents is a crucial decision. We use the
single-parameter Poisson distribution to specify this distribution, as in the work of Wright
and Leyton-Brown (2017).

The Poisson-QCH model is a QCH model where the distribution of agent types follows
a Poisson distribution.

2. More precisely, quantal best response approaches best response when best response returns a singleton
set. When best response returns a set containing multiple elements, quantal best response approaches a
mixed strategy that uniformly randomizes among those elements.
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Definition 2 (Poisson-QCH model). Let πi,m ∈ ∆(Ai) be the distribution over actions
predicted for an agent i with level m. Let

πi,0:m =

m∑
`=0

Poisson(`; τ)∑m
`′=0 Poisson(`′; τ)

πi,`

be the truncated distribution over actions predicted for an agent conditional on that agent’s
having level 0 ≤ ` ≤ m. Let π−i,0:m be the truncated distribution over the action profiles
predicted for agents other than i, conditional on those agents’ having level 0 ≤ ` ≤ m. Now
we can define the πi,m predicted by the Poisson-QCH model:

πi,0(ai) = |Ai|−1

πi,m(ai) = QBRi(π−i,0:m−1;λ).

Notice that πi,0 is just the uniform distribution; that is, level-0 agents randomize uniformly
among their actions. In Sections 3 and 4, we will construct more plausible definitions of
level-0 behavior by replacing πi,0 with richer distributions. This baseline model thus has
two parameters: the mean of the Poisson distribution τ and the precision λ. The overall
predicted distribution of actions is a weighted sum of the distributions for each level:

Pr(ai |G, τ, λ) =
∞∑
`=0

Poisson(`; τ)πi,`(ai).

2.2 Data

We analyzed data from the ten experimental studies summarized in Table 1.
Several studies (Stahl & Wilson, 1994, 1995; Haruvy, Stahl, & Wilson, 2001; Haruvy &

Stahl, 2007; Stahl & Haruvy, 2008) paid participants according to a randomized procedure
in which experimental subjects played normal-form games for points representing a 1%
chance (per game) of winning a cash prize. In the work of Costa-Gomes, Crawford, and
Broseta (1998), each payoff unit was worth 40 cents, but participants were paid based on
the outcome of only one randomly-selected game. In the remaining studies (Goeree & Holt,
2001; Cooper & Van Huyck, 2003; Costa-Gomes & Weizsäcker, 2008; Rogers, Palfrey, &
Camerer, 2009), game payoffs were worth a deterministic number of cents. We summarize
the expected value of payoff points in the “Units” column of Table 1.

Goeree and Holt (2001) presented 10 games in which subjects’ behavior was close to
that predicted by Nash equilibrium, and 10 other small variations on the same games in
which subjects’ behavior was not well-predicted by Nash equilibrium. We included the
10 games that were in normal form. In the work of Cooper and Van Huyck (2003), agents
played the normal forms of 8 games, followed by extensive form games with the same induced
normal forms; we include only the data from the normal-form games. The remaining studies
consisted exclusively of normal-form games.

We represent the data for each game Gr as a pair (Gr, {arj}) containing the game itself
and a set of observed actions in the game. All games had two players, so each single play of
a game generated two observations. We built one such dataset for each study, as listed in
Table 1. We also constructed a combined dataset, dubbed All10, containing data from all
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Table 1: Names and contents of the datasets we analyzed. The “Units” column gives the
expected value of each payoff point in US dollars; in the All10 dataset, earnings
are all normalized to $0.01 per point. The “Earnings Range” column gives the
range of possible earnings for each subject. The “Obs.” column gives the number
of observations. The “Games” column gives the number of games we included from
the study, with the number of included games that were symmetric in parentheses.

Name Source
Games
(sym.)

Obs. Units Earnings Range

SW94 Stahl and Wilson (1994) 10 (10) 400 $0.025 $0.25 – $25.00
SW95 Stahl and Wilson (1995) 12 (12) 576 $0.02 $0.00 – $24.00
CGCB98 Costa-Gomes et al. (1998) 18 (0) 1566 $0.022 $7.84 – $36.16
GH01 Goeree and Holt (2001) 10 (4) 500 $0.01 $-1.02 – $23.30
CVH03 Cooper and Van Huyck (2003) 8 (0) 2992 $0.10 $0.80 – $4.80
HSW01 Haruvy et al. (2001) 15 (15) 869 $0.02 $0.00 – $30.00
HS07 Haruvy and Stahl (2007) 20 (20) 2940 $0.02 $1.05 – $17.40
CGW08 Costa-Gomes and Weizsäcker

(2008)
14 (0) 1792 $0.0107 $1.83 – $14.13

SH08 Stahl and Haruvy (2008) 18 (18) 1288 $0.02 $0.00 – $17.55
RPC09 Rogers et al. (2009) 17 (12) 1210 $0.01 $2.31 – $13.33

All10 Union of above 142 (91) 13863 $0.01 n/a

the datasets. The datasets contained very different numbers of observations, ranging from
400 (Stahl & Wilson, 1994) to 2992 (Cooper & Van Huyck, 2003). To ensure that each fold
had approximately the same population of subjects and games,3 we evaluated All10 using
stratified cross-validation, ensuring that the number of games from each source dataset was
approximately equal in each partition element (e.g., Murphy, 2012). We also renormalized
all games so that their payoffs were expressed in expected cents. This is important because
the precision parameter for quantal response is not scale invariant : the correct value of λ
can differ depending upon the units in which payoffs are expressed.

2.3 Methods

Models cannot be evaluated unless their parameters are instantiated. We set parameters to
values that maximized the likelihood the model assigned to a training dataset. We performed
this likelihood maximization using the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) algorithm (Hansen & Ostermeier, 2001). We then scored a given model’s per-
formance by the likelihood it assigned to a test dataset, consisting entirely of games (and,
hence, observations) that were not used for estimating parameters.

3. Each fold had only an approximately equal number of games under this scheme because the number of
games in most source datasets was not an exact multiple of 10.
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We randomly divided our data into training and test datasets using 10-fold cross-
validation. Specifically, for each round, we randomly ordered the games and then divided
them into 10 equal-sized parts. For each of the 10 ways of selecting 9 parts from the 10,
we computed the maximum likelihood estimate of the model’s parameters based on the
observations associated with the games of those 9 parts. We then determined the likelihood
of the remaining part given the prediction. We call the average of this quantity across
all 10 parts the cross-validated likelihood. Randomly dividing our experimental data into
training and test sets introduces variance into the prediction score, since the exact value of
the score depends partly upon the random division. To reduce this variance, we performed
10 rounds of 10-fold cross-validation, and report the average of these 10 rounds (the av-
erage cross-validated likelihood). This allows us to estimate the variance that the division
into training and test sets introduced, in a way that simply performing a single round of
100-fold cross-validation would not. The average cross-validated likelihood is distributed
according to a Student’s-t distribution (e.g., Witten & Frank, 2000). We compare the pre-
dictive power of different behavioral models on a given dataset by comparing the average
cross-validated likelihood of the dataset under each model. We say that one model pre-
dicted significantly better than another when the 95% confidence intervals for the average
cross-validated likelihoods do not overlap.

It can also be desirable to analyze and interpret the values taken by parameters in a
model. Point estimates—such as values that maximize likelihood—can be unstable and/or
misleading. We advocate instead for computing posterior distributions over a model’s pa-
rameters, estimated via a set of samples. In this paper (see Section 4.3) we used the
Metropolis–Hastings algorithm, as implemented by the PyMC software package (Patil,
Huard, & Fonnesbeck, 2010), to generate such samples. The Metropolis–Hastings algo-
rithm is a Markov Chain Monte Carlo (MCMC) algorithm (e.g., Robert & Casella, 2004)
that computes a series of values from the support of a distribution. MCMC algorithms (and
related techniques such as annealed importance sampling (Neal, 2001)) are useful for esti-
mating multidimensional distributions for which a closed form of the density is unknown.
We used a flat (i.e., uniform) prior for all parameters. For precision parameters, another
natural choice might have been to use a flat prior on the log of precision. In this work, we
wanted to avoid artificially preferring precision estimates closer to zero, since it is common
for iterative models to assume agents best respond nearly perfectly to lower levels (that is,
that they have infinitely high precisions). Our posterior precision estimates tended to be
concentrated near zero regardless.

3. Level-0 Model

In this section we present components from which we can construct models for computing
level-0 distributions of play. We begin by precisely defining “nonstrategic” behavior. We
then describe specific nonstrategic features computed for each of an agent’s actions, followed
by options for combining feature values to obtain a level-0 prediction.

3.1 Nonstrategic Behavior

Most applications of iterative models specify that level-0 agents choose their actions uni-
formly at random, thus implicitly equating nonstrategic behavior with uniform randomiza-
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tion. This paper is motivated by the observation that nonstrategic behavior need not be
uniform. How then might a nonstrategic agent behave?

We refer to the process of responding to explicit beliefs about the behavior of other
agents as strategic behavior, and refer to all other behavior as nonstrategic. In QCH, agents
of level 1 or higher are strategic in this sense; they quantally best respond to their beliefs
about the actions of lower-level agents.

Nonstrategic behavior may take account of payoffs to varying degrees. At the most
extreme, it is easy to see that uniform behavior is nonstrategic, as it depends neither on
an agent’s own payoffs, nor those of the other agents. Behavior that depends on only an
agent’s own payoffs—such as the maxmax payoff feature of Section 3.2—is also nonstrategic,
since the agent cannot plausibly form beliefs about the other agents’ behavior without
referencing their payoffs. Even some behavior that depends on the payoffs of all agents may
be nonstrategic, when the payoffs are not used for forming and responding to explicit beliefs
about the other agents’ actions. Here, however, it is necessary (and nontrivial) to show that
behavior that is not couched in terms of responding to explicit beliefs furthermore cannot be
represented as though it did respond to some such beliefs. For example, the maxmax payoff
feature can be expressed as a best response to a particular probabilistic belief (namely,
that the other agents will play actions such that the maxmax action will actually yield its
maximum payoff).

Formalizing nonstrategic behavior is thus trickier than it might seem; doing so rigorously
is the subject of a companion paper (Wright & Leyton-Brown, 2018). We summarize some
key take-aways here. In that work we define as nonstrategic any behavior that can be
computed via a finite combination of elementary agent models—that is, of functions that
score each action available to an agent based upon a single scalar for each action profile,
rather than a full tuple of separate payoffs for each agent. This outcome score may be
the agent’s own payoff or some combination of all agents’ payoffs; however, it must not
be possible in general to recover the original tuple of payoffs from the outcome score.4

The essential intuition captured by this definition is that a nonstrategic agent does not
independently reason about the actions of the other agents as distinct from the agent’s own
actions.

Definition 3 (Elementary agent model). An agent model for agent i is a function fi(G)
that maps from a normal-form game G to a vector of reals with dimension |Ai| (i.e., one
real number for each of i’s actions). An agent model is elementary if it can be computed
as fi(G) = hi(Φ(G)), where:

• Φ(G)a = ϕ(u(a)) for every action profile a,

• ϕ(u(a)) = wTu(a). That is, ϕ(u(a)) is computed by taking a linear combination of
the players’ utilities at pure action profile a, with the weights defined by a vector
w ∈ Rn.5

4. Here, let us assume that outcome scores are linear combinations of each outcome’s payoffs. More broadly,
we can generalize beyond linearity.

5. In the companion paper, we use a weaker condition on ϕ that generalizes linear combinations. However,
every feature that we consider here can be represented as a linear combination, so we use this more
restrictive definition of elementary agent models.
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• h is an arbitrary function.

Clearly any behavior that can be computed using only the agent’s own utilities (such
as the maxmax payoff feature) can be computed by an elementary agent model with w =
(1, 0, . . . , 0). However, some behavior that takes account of other agents’ utilities can also
be computed—e.g., the maxmax welfare feature, which recommends actions leading to the
highest total payoffs among all agents, can be calculated using only the sum of all agents’
utilities, corresponding to an elementary agent model with w = (1, 1, . . . , 1).

The key result of our companion paper is that restricting attention to behavior that
can be computed by elementary agent models is a substantive restriction. Of particular
relevance to our discussion here, we prove that it is impossible to define QCH using only
finite combinations of elementary agent models (Wright & Leyton-Brown, 2018). This
justifies our calling level-0 behaviors nonstrategic and level-k > 0 behaviors strategic: the
mathematical structure of QCH ensures that this will be true in general.

3.2 Level-0 Features

The models we considered are driven by the idea of simple rules (features) that recommend
one or more actions to greater or lesser degrees. We restrict our attention to features that
can be computed directly from the normal form of the game and that do not depend on
presentation details such as the units in which payoffs are expressed or the order in which
actions are presented. This allows for more accurate analysis of strategic models, even when
details of the presentation are unknown or not yet known. We do not claim that the features
that we investigated comprise an exhaustive list of factors that could influence nonstrategic
agents’ actions. Of course, we also restrict ourselves to features that are nonstrategic in the
sense of not being responses to explicit beliefs about the other agents’ behavior. Following
the argument just given, we formalize this restriction as requiring that each feature be an
elementary agent model as in Definition 3.

For each feature, we briefly describe its motivation and then give a formal definition.
Many of our features have been investigated in both the classical and behavioral game theory
literature in other contexts. To give one example, the maxmax payoff, maxmin payoff,
and maxmax welfare features correspond to the Optimistic, Pessimistic, and Altruistic
nonstrategic types in the work of Costa-Gomes et al. (2001). We obtained other features,
such as max-symmetric, via introspection about paradigmatic games such as the Traveler’s
Dilemma.

For each feature, we define both a binary version with range {0, 1} and a real-valued
version with range R+. Binary features recommend one or more actions that maximize
some criterion. In contrast, the corresponding real-valued feature recommends each action
to the degree that it maximizes the same criterion. This addresses the intuition that two
very high payoff actions may both be attractive, even if one offers marginally higher payoff.
We indicate real-valued features with the modifier [R]. Some real-valued features represent
quantities that an agent would wish to minimize, rather than maximize. We apply the
inv transformation to these features, where inv is defined differently depending upon how
features will be combined: if feature values will be combined linearly, then inv(x) = 1/x; if
feature values will be combined with a logit function, then inv(x) = −x.
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Maxmin payoff. A maxmin action for agent i is the action with the best worst-case
guarantee. That is,

fmaxmin(ai) =

{
1 if ai ∈ arg maxa′i∈Ai

mina−i∈A−i ui(a
′
i, a−i),

0 otherwise.

This is an action that is weakly safer to play against a hostile agent than any other individual
action; there may be multiple such actions.6 The real-valued version of this feature returns
the worst-case payoff for an action:

fmin[R](ai) = min
a−i∈A−i

ui(ai, a−i).

Maxmax payoff. In contrast, a maxmax action for agent i is the best action in the best
case. That is,

fmaxmax(ai) =

{
1 if ai ∈ arg maxa′i∈Ai

maxa−i∈A−i ui(a
′
i, a−i),

0 otherwise.

An agent who aims to maximize his possible payoff will play a maxmax action. The real-
valued version of this feature returns the best-case payoff for an action:

fmax[R](ai) = max
a−i∈A−i

ui(ai, a−i).

Minimax regret. Savage (1951) proposed the minimax regret criterion for making deci-
sions in the absence of probabilistic beliefs. In a game theoretic context, it works as follows.
For each action profile, an agent has a possible regret : how much more utility could the
agent have gained by playing the best response to the other agents’ actions? Each of the
agent’s actions is therefore associated with a vector of possible regrets, one for each possible
profile of the other agents’ actions. A minimax regret action is an action whose maximum
regret (in the vector of possible regrets) is minimal. That is, if

r(ai, a−i) = max
a∗i∈Ai

ui(a
∗
i , a−i)− ui(ai, a−i)

is the regret of agent i in action profile (ai, a−i), then

fmmr(ai) =

{
1 if ai ∈ arg mina′i∈Ai

maxa−i∈A−i r(a
′
i, a−i),

0 otherwise.

The real-valued version of this feature returns the worst-case regret for playing an action:

fmmr[R](ai) = inv

[
max

a−i∈A−i

r(ai, a−i)

]
.

We apply the inv transformation to model a preference for lower maximum regret.

6. Often, a mixed strategy will be safer still against a hostile agent. However, in this application we are
not actually trying to find a safest strategy for the agent. Rather, we are trying to specify features of
individual actions that might make them attractive to nonstrategic agents.
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Maxmax fairness. Concern for the fairness of outcomes is a common feature of human
play in strategic situations, as has been confirmed in multiple behavioral studies, most fa-
mously in the Ultimatum game (Thaler, 1988; Camerer & Thaler, 1995). Let the unfairness
of an action profile be the difference between the maximum and minimum payoffs among
the agents under that action profile:

d(a) = max
i,j∈N

ui(a)− uj(a).

Then a fair outcome minimizes this difference in utilities. The maxmax fairness feature
selects every action which is part of a maximally fair action profile.

f fair(ai) =

{
1 if ai ∈ arg mina′i∈Ai

mina−i∈A−i d(a′i, a−i),

0 otherwise.

The real-valued version of this feature returns the maximum fairness that could result from
playing a given action:

f fair[R](ai) = inv

[
min

a−i∈A−i

d(ai, a−i)

]
.

We apply the inv transformation to translate from unfairness to fairness.

Max symmetric. In a symmetric game, one simple way to guess how other agents would
act is to assume that they will act in the same way as oneself. We say that a utility
function u is symmetric if all agents’ action sets are the same size, and if when two agents
swap actions under any action profile for the other agents, they also swap utilities. Formally
(restricting to the case of two agents to simplify notation), we define the proposition

Symm(u)⇔ ∀i, j ∈ N, |Ai| = |Aj | ∧ ∀ai, aj ∈ Ai, ui(ai, aj) = uj(aj , ai).

A max-symmetric action is then the agent’s part of the highest-utility profile of identical
actions:

fmaxsymm(ai) =

{
1 if Symm(u) ∧ ai ∈ arg maxa′i∈Ai

ui(a
′
i, . . . , a

′
i),

0 otherwise.

Note that if a game is not symmetric, this feature is still well defined, but evaluates to zero
across all actions.

The real-valued version of this feature returns the symmetric payoff of an action for
symmetric games, or 0 otherwise:

f symm[R](ai) =

{
0 if ¬Symm(u),

ui(ai, . . . , ai) otherwise.

Maxmax welfare. Finally, one reason that a nonstrategic agent might find an action
profile desirable is that it produces the best overall benefit to the agents collectively. The
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maxmax welfare feature selects every action that is part of some action profile that maxi-
mizes the sum of utilities:

fwelfare(ai) =

{
1 if ai ∈ arg maxa′i∈Ai

maxa−i∈A−i

∑
j∈N uj(a

′
i, a−i),

0 otherwise.

The real-valued version of this feature returns the maximum welfare that could result from
playing a given action:

fwelfare[R](ai) = max
a−i∈A−i

∑
j∈N

uj(ai, a−i).

3.3 Combining Feature Values

Once a set of features has been computed for each of a set of actions, their values must be
combined to yield a single distribution over actions. We considered two functional forms,
inspired by linear regression and logistic regression. Both specifications accept a set of
features and a set of weights. Let F be a set of features mapping from an action to R+.
For each feature f ∈ F , let wf ∈ [0, 1] be a weight parameter with

∑
f∈F wf ≤ 1; let

w0 = 1−
∑

f∈F wf .
Our first functional form produces a level-0 prediction over actions for a given agent by

taking a weighted sum of feature outputs for each action and then normalizing to produce
a distribution.

Definition 4 (Weighted linear level-0 specification). The weighted linear level-0 specifica-
tion predicts the following distribution of actions for level-0 agents:

πlinear,F
i,0 (ai) =

w0 +
∑

f∈F wff(ai)∑
a′i∈Ai

[
w0 +

∑
f∈F wff(a′i)

] .
The second functional form assigns a level-0 probability proportional to the exponential

of a weighted sum of feature values.

Definition 5 (Logit level-0 specification). The logit level-0 specification predicts the fol-
lowing distribution of actions for level-0 agents:

πlogit,F
i,0 (ai) =

exp(w0 +
∑

f∈F wff(ai))∑
a′i∈Ai

exp(w0 +
∑

f∈F wff(a′i))
.

3.4 Feature Transformations

In addition to two functional forms for combining the feature values, we also evaluated two
transformations to feature values. If employed, these transformations are applied to each
feature value before the features are weighted and combined.

The first transformation zeroes out features that have the same value for every action,
which we call uninformative. The intuition behind this transformation is that informative
features should have a greater influence on the prediction precisely when the other fea-
tures are less informative. This transformation is useful only when working with the linear
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functional form: it has no effect under the logit functional form, since it corresponds to a
constant translation by the magnitude of the zeroed-out feature, and the logit functional
form is invariant to translations.

Definition 6 (Informativeness feature transformation). A feature f is informative in a
game G if there exists a′i, a

′′
i ∈ Ai such that f(a′i) 6= f(a′′i ). The informativeness transforma-

tion I(f) of a feature f returns the feature’s value when it is informative, and zero otherwise:

I(f)(ai) =

{
f(ai) if ∃a′i, a′′i ∈ Ai : f(a′i) 6= f(a′′i ),

0 otherwise.

The hypothesis represented by this transformation is that people will ignore features
that do not distinguish between actions, even if those features have high weights. When a
feature is uninformative due to not recommending any action, the informativeness trans-
formation has no effect. However, when a feature is uninformative due to recommending
every action, the informativeness transformation allows the model to give higher relative
weight to informative features. To see why, consider two features, one with a weight of 0.6
and one with a weight of 0.3 (meaning that the noise weight w0 = 0.1). If the high-weight
feature recommends both actions of a two-action game and the low-weight feature recom-
mends only the first action, then the untransformed linear model would assign probabilities
0.6+0.3+0.1

1.7 = 0.59 and 0.6+0.1
1.7 = 0.41 to the two actions. When the informativeness trans-

formation is applied, however, the linear model would assign much less noisy probabilities:
0.3+0.1

0.5 = 0.8 and 0.1
0.5 = 0.2.

The second transformation normalizes feature values to [0, 1]. This limits the degree to
which one real-valued feature can overwhelm other features.

Definition 7 (Normalized activation feature transformation). The normalized activation
transformation N(f) constrains a feature f to take nonnegative values that sum to 1 across
all of a game’s actions:

N(f)(ai) =
f+(ai)∑

a′i∈Ai
f+(a′i)

,

where

f+(ai) = f(ai)−min{0, min
a′′i ∈Ai

f(a′′i )}.

4. Model Selection

We took two approaches to constructing models from the candidate features, functional
forms, and transformations described in the previous section. First, we exhaustively evalu-
ated all subsets of binary features using the linear functional form and the informativeness
transformation (Section 4.1). We chose this functional form based on a manual evaluation
we performed in the experiments described by the conference version of this paper (Wright
& Leyton-Brown, 2014), in which a linear functional form and normalized activation- and
informativeness-transformed binary features yielded good performance. Second, although
the full space of candidate features, functional forms, and transformations was too large
to permit us to test every combination, we used a Bayesian optimization technique to seek
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Figure 1: Prediction performance of Poisson-QCH extended by a linear, normalized-
activation- and informativeness-transformed level-0 model using every subset of
the binary features from Section 3.2, grouped by number of parameters in the
feature sets and with error bars showing 95% confidence intervals. Each point’s
label indicates which features were included: (M) maxmax payoff; (N) maxmin
payoff; (R) minmax regret; (W) maxmax welfare; (F) maxmax fairness; (S) max
symmetric. Performance (the y-axis) is measured as cross-validated likelihood
of predictions divided by the likelihood of a uniform at random (u.a.r.) predic-
tion. The efficient frontier indicates the best-performing model for each number
of parameters.

combinations yielding good performance, devoting about 9 CPU months to this search
(Section 4.2).

Our dataset contains only two-player games, and so the results of this section are based
on two-player interactions. We believe that our results would generalize to multiple player
games—particularly because we model the reasoning process of an agent who does not
explicitly form beliefs about other players—but we leave the exploration of this question to
future work.

4.1 Exhaustive Evaluation

We evaluated the test performance of the Poisson-QCH model, extended by a linear,
normalized-activation- and informativeness-transformed level-0 model using every subset
of the binary features from Section 3.2. The results are shown in Figure 1. The y-axis gives
the average ratio of the cross-validated likelihood of each model’s predictions divided by
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Figure 2: Training and prediction performance with 95% confidence intervals for Poisson-
QCH extended by binary features, for the best performing set of features chosen
by exhaustive evaluation at each number of features. Feature sets are specified by
the following code: (M) maxmax payoff; (N) maxmin payoff; (R) minmax regret;
(W) maxmax welfare; (F) maxmax fairness; (S) max symmetric.

the likelihood of a uniform random prediction.7 All else being equal, a model with higher
performance is more desirable, as is a model with fewer parameters. Figure 1 includes an
efficient frontier of those models that achieved the best performance for each given number
of parameters or fewer.8

The best performing linear model contained four features: maxmax payoff, maxmin
payoff, maxmax fairness, and max symmetric; we dub this model linear4. Adding further
features did not improve prediction performance. Two obvious hypotheses could explain
why adding extra features harmed test performance: overfitting (our model was overly
flexible and so fit noise in the training dataset that was not duplicated in the test dataset)
and underfitting (our optimization procedure failed to effectively optimize the more complex
models). Figure 2 shows the training and test performance for the best-performing model at
each number of features. Notice that training performance increased with every additional
feature, whereas test performance increased for the first four features and then decreased.
This supports the hypothesis that overfitting was the cause of our observed performance
decrease.

7. The numbers on this axis are very large, as the likelihood ratios are exponential in the number of
observations in the dataset.

8. The max-symmetric feature was selected first by the exhaustive search, and was included in every model
on the efficient frontier. Clearly this would not have happened in a dataset that did not include symmetric
games. However, this does not mean that the selected model fails to generalize to asymmetric games; in
such games, the model acts as if the max-symmetric feature was not included.
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4.2 Bayesian Optimization

We performed Bayesian optimization using SMAC (Hutter, Hoos, & Leyton-Brown, 2010,
2011, 2012). While SMAC was originally designed to optimize the configuration of algo-
rithms, it has since proven effective for a variety of other black-box function optimization
tasks (Hutter, Hoos, & Leyton-Brown, 2013; Thornton, Hutter, Hoos, & Leyton-Brown,
2013). SMAC evaluates each configuration on a randomly-chosen instance (i.e., input to
the algorithm); it then updates a random forest model of predicted performance for config-
urations. It determines which configurations to evaluate based on this performance model
using the expected improvement criterion. A model’s expected improvement is its expected
performance, conditional on its performance exceeding that of the current best model. This
provides a natural balance between exploration and exploitation, as models that are very
likely to have high performance are favored, but so are models whose performance is very
uncertain.

During Bayesian optimization, we need to train and evaluate candidate models on sepa-
rate data. This evaluation must not involve any of our held-out test data, to ensure that our
evaluation of final models remains unbiased. For the experiments described in this section,
we randomly selected 10% of the All10 dataset as a held-out test set. This test set was
used only for generating the final performance estimates that we report in this paper. The
remaining 90% of the data was used as a training data set (80% of the original data) and
a validation set (10% of the original data). Each model selected by SMAC for evaluation
was first trained on the training set and then evaluated on the validation set. The results of
the validation were reported to SMAC. When evaluating the results of the run to generate
figures, we retrained each model using the combination of the training and validation sets,
and evaluated the model’s performance on the held-out test set.

A consequence of this setup is that we do not obtain error bounds for each model,
unlike the procedure we used in Section 2.2. (Recall that the latter procedure obtained
error bounds by cross-validating results from multiple divisions of the data.) We used a
different procedure for our SMAC experiments for two reasons. First, the use of a single
data division allowed SMAC to rapidly search a much larger number of models. Second, we
needed separate validation and test sets: the first to allow SMAC to estimate generalization
performance, and the second to evaluate the results of the Bayesian optimization. To get
some sense of what variation was due to training/validation/test set splits, we did repeat
the procedure using two independent random divisions. More specifically, we ran 22 parallel
SMAC processes for 380 hours each. Half of these processes operated on one random split
of the data (Figure 3(a)), and half on another random split (Figure 3(b)). In addition to
the incumbent models, Figure 3 includes the following models for comparison: linear4,
linear7 (defined in Section 4.4), and linear8 (defined later in this section).

Out of the 1766 models evaluated by SMAC, there were 42 unique “incumbents”—
models that were considered the best by SMAC at some point in the search. Figure 3 shows
the predictive performance achieved by each of these incumbent models in the divisions in
which they were found, again grouped by number of parameters. The best-performing model
found by SMAC in the first random division (henceforth smac1) was a 9-parameter model
that linearly combined the following features: max payoff[R], min payoff[R], fairness[R],
symmetric payoffs[R], maxmax payoff, maxmax welfare, and max symmetric payoffs. In the
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(b) Second random training/validation/test set split.

Figure 3: Prediction performance for Poisson-QCH extended by features, functional form,
and feature transformations selected by Bayesian optimization. We show models
that were at any point “incumbent” (i.e., the best found by SMAC at some point
in time), plus linear4, linear8, and the linear7 model of Section 4.4, which
is linear8 with the fairness[R] feature omitted. Each incumbent is shown only
in the division in which SMAC evaluated it. The best-performing incumbent in
division 1 is labeled smac1, and the best-performing incumbent in division 2 is
labeled smac2.

second division, SMAC’s best-performing incumbent (henceforth smac2) was an 8-parameter
model that linearly combined the same features, except that maxmax welfare was replaced
by maxmax fairness, and fairness[R] was not included.

Interestingly, the best-performing incumbent model for every number of parameters
combined its features linearly, with no exceptions in the first division, and only two ex-
ception in the second division. One might have expected the logit specification to perform
better, since it has a tunable precision. However, the logit combination tended to produce
higher-entropy (i.e., noisier) predictions than the linear combination; this might explain its
worse performance. We note that this explanation is consistent with the selection of the
informativeness transformation, which also reduces predictions’ entropy.

Many of SMAC’s incumbents contained both real-valued and binary-valued versions of
the same features. We hypothesized that linear4 augmented by real-valued versions of
its four binary features only (i.e., excluding the welfare and max-regret features) would
perform better than linear4. This model, which we refer to as linear8, was not checked
by SMAC, and so we checked it manually. As shown in Figure 3, linear8 performed better
than any other model SMAC checked—including smac1—in the first division, and just as
well as smac2 in the second division. For the remainder of the paper, we thus focus our
attention on the linear4 and linear8 models.

4.3 Parameter Analysis

We now examine and interpret some of the parameters of the Poisson-QCH model combined
with the linear4 and linear8 level-0 specifications. As described in Section 2.3, we take
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Figure 4: Marginal cumulative posterior distributions of levels of reasoning in the All10
dataset, for Poisson-QCH with linear8, linear4, and uniform specifications.

the Bayesian approach of analyzing the posterior distribution of the parameters given the
data. The variation in these plots is over the parameters themselves, rather than over the
data.9 We present the posterior distributions as cumulative marginal distributions; i.e.,
for every parameter, we plot the cumulative density function (CDF)—the probability that
the parameter should be set less than or equal to a given value—averaging over values of
all other parameters. Plotting cumulative density functions allows us to visualize an en-
tire continuous distribution without having to estimate density from discrete samples, thus
sparing us manual decisions such as the width of bins for a histogram. Plotting marginal
distributions allows us to examine intuitive two-dimensional plots about multi-dimensional
distributions. Interaction effects between parameters are thus obscured. We revisit the
issue of possible interaction effects at the end of this subsection.

Figure 4 shows the marginal posterior distribution for the proportions of each level in
the population (up to level 3), for each of the linear4, linear8, and uniform specifications.
The possible proportions are given on the x axis; the probabilities of the proportion having
that value or less (i.e., the cumulative probabilities) are given on the y axis. Note that the

9. That is, we hold the data fixed and report the posterior probability of different parameter values.
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Figure 5: Marginal cumulative posterior distributions of precision (λ) in the All10 dataset,
for Poisson-QCH with linear8, linear4, and uniform specifications.

distributions of proportions are computed from the distribution of the τ parameter: i.e.,
each value of τ implies a specific proportion for each level.

Generally, we observe that richer level-0 specifications gave rise to higher proportions
of level-0 agents. This was especially striking under the linear8 specification, which gave
rise to a median estimate of over half the agents (58%) being level 0. For the linear4

and uniform specifications the corresponding medians were 0.37 and 0.32 respectively. The
linear8 and linear4 specifications therefore also led to predictions of fewer higher-level
agents than the uniform specification.

Figure 5 shows the posterior distributions of the λ parameter for each of the linear4,
linear8, and uniform specifications. All three specifications had similar estimates for this
parameter. The posterior distributions of λ for the linear4 and linear8 specifications had
overlapping 95% credible intervals, and hence were not significantly different. The 95%
credible intervals for the posteriors of both the linear4 and linear8 specifications were
disjoint from and larger than that of the uniform specification. Quantal response serves
two purposes: it accounts for errors of reasoning that people actually make, and it provides
an error structure for the model itself. Thus, higher precision estimates for the richer
specifications may simply reflect their improved accuracy.

Figures 6 and 7 show the marginal posterior distributions for the weights of the linear4

and linear8 models respectively on the All10 dataset. As with the distribution over levels,
the posterior distributions on nearly all of the weight parameters had modes with very nar-
row supports, indicating that the data argued consistently for specific ranges of parameter
values. The fairness[R] feature of the linear8 specification was the exception to this rule,
with an flat distribution over values that indicates a lack of identification. In Section 4.4,
we will analyze a version of the linear8 model that omits this feature (called linear7), and
find that it performs just as well as linear8.

First, let us consider binary features. These had qualitatively similar weights in both the
linear4 and linear8 specifications: the fairness feature had by far the highest median pos-
terior weight, the maxmax feature had the second-highest weight, and the max-symmetric
and maxmin features both had small and essentially identical weights, with very overlap-
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Figure 6: Marginal cumulative posterior distributions over weight parameters of the linear4

specification, for Poisson-QCH on the All10 dataset. The uniform noise weight
is defined implicitly by the other four weights as w0 = 1−
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Figure 7: Marginal cumulative posterior distributions over weight parameters of the linear8

specification, for Poisson-QCH on the All10 dataset. The uniform noise weight
is defined implicitly by the other eight weights as w0 = 1−

∑
f∈F wf .

ping posterior distributions. Interestingly, even though the fairness feature was the highest
weighted, it was not selected first by the exhaustive evaluation procedure (max symmetric
was selected first). This likely indicates that fairness is more predictive than other features
when it is present, but that it is predictive in fewer games than max symmetric.

Now let us consider real-valued features. The max-payoff[R] and min-payoff[R] features
had similar posterior weights in the linear8 specification, with overlapping posterior sup-
ports. These were the highest-weighted features in the linear8 specification. The fairness[R]
feature was not well identified. This could indicate that it is not an important feature; alter-
natively, it could indicate interaction effects. We present additional evidence in Section 4.4
that the fairness[R] feature is simply not an important feature. The symmetric-payoff[R]
feature was well identified and had a very small weight; evidently, the action with the
highest symmetric payoff is somewhat salient, but the actual value of the payoff is not.
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(a) linear4

(b) linear8

Figure 8: Two-dimensional projections of posterior distributions over weight distributions
for the linear4 and linear8 models, for Poisson-QCH on the All10 dataset.
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The weight allocated to uniform randomization between the linear8 and linear4 spec-
ifications was very different; the linear4 specification allocated nearly half of its weight to
uniform randomization, whereas for the linear8 specification uniform randomization played
almost no part. This, combined with the strong similarity in the weighting of binary fea-
tures between the two specifications, suggests that the real-valued features (especially the
max and min payoff features) played a genuine role in reducing uncertainty.

Figure 8 shows scatter plots of samples from the posterior distribution of the weights
of the linear4 and linear8 models on the All10 dataset, marginalizing out all but each
pair of features. This lets us check for interactions between pairs of weights. The plots for
linear4 give little indication of interaction effects. The modes of the projected distributions
are roughly circular ellipses, rather than the long ridges that would arise given a strong
interaction effect. The ellipses are slightly diagonal, possibly indicating a mild correlation
introduced by the normalized activation feature transformation.

In the linear8 model, the maxmin, maxmax, and symmetric payoff features appear to
interact with the maxmax fairness feature. The max payoff[R] and min payoff[R] features
also appear to have a mild interaction. This may simply reflect that the games in our
dataset have slightly different payoff ranges depending on the underlying study, such that
the maximum payoff is mildly predictive of the minimum payoff, and vice versa. The scatter
plots for the linear8 model that involve the fairness[R] feature extend either horizontally or
vertically across the plot, consistent with the poor identification of the fairness[R] feature
that is apparent from Figure 7.

4.4 Extended Model Performance

We now investigate the extent to which our results generalize beyond Poisson-QCH models,
comparing to Poisson Cognitive Hierarchy (Camerer et al., 2004) and Level-k (Costa-Gomes
et al., 2001) models. We revisited the specifications of level-0 behavior discussed so far:
uniform randomization, linear4 from Section 4.1, and linear8 from Section 4.2. In light
of the lack of identification of the fairness[R] feature discussed in the previous section,
we also considered a version of linear8 that omitted fairness[R]; we call this specification
linear7. The results are displayed in Figure 9. Overall, the linear4 specification yielded
a large performance improvement, both on Poisson-QCH and on the two other iterative
models. In fact, the other two models benefited disproportionately from the improved level-
0 specifications. This is especially interesting given that the level-0 models were selected
based solely on the degree to which they improved Poisson-QCH’s performance. Poisson-
QCH performed better than the other two models under all level-0 specifications, but the
three models had much more similar (and improved) performance under the linear4 and
linear7/linear8 specifications than under the uniform specification.

The linear7 and linear8 specifications both yielded a performance improvement over
linear4, but their performance did not differ significantly from each other. This provides
further evidence that the fairness[R] feature is not predictive.

5. Related Work

Almost every study that employs iterative reasoning models based on either level-k or
cognitive hierarchy architectures assumes a uniform distribution of play for level-0 agents.
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Figure 9: Average likelihood ratios of model predictions to random predictions, with 95%
confidence intervals. Results are shown for three different iterative models (Pois-
son Cognitive Hierarchy (Camerer et al., 2004), Level-k (Costa-Gomes et al.,
2001), and Poisson Quantal Cognitive Hierarchy (Wright & Leyton-Brown,
2017)) using four different level-0 specifications (uniform randomization, linear4
from Section 4.1, linear8 from Section 4.2, and linear7, which is linear8 with
the unidentified fairness[R] feature omitted).

However, there are a few exceptions. Crawford and Iriberri (2007a) manually designated
certain actions as “salient” (based on visual features such as “leftmost”) in a hide-and-seek
game. They then estimated an iterative model with a level-0 specification in which level-0
agents play salient actions, with the strengths of each action’s salience estimated under the
assumption that no agent truly plays a level-0 distribution. Crawford and Iriberri (2007b)
specified truth telling as the single salient action in first-price auctions. Arad and Rubinstein
(2009) specified a single action of reinforcing all battlefields equally in a Colonel Blotto game
as the sole level-0 action. Arad and Rubinstein (2012) specified the highest possible request
as the level-0 action in a money-request game where players receive the amount of money
they request, but also receive a relatively large bonus for requesting exactly 1 shekel less
than the other player. Arad (2012) manually specified two “anchor” strategies for a Colonel
Blotto-like game in which players simultaneously assign four representatives to four separate
contests in order of the representatives’ ability.

In spite of the crucial dependence of iterative models upon the specification of the
level-0 distribution, few studies have empirically investigated level-0 play. Agranov, Caplin,
and Tergiman (2010) incentivized subjects to choose an action quickly (and then to revise
it after thinking) by imposing a randomized time limit when playing the beauty-contest
game of Nagel (1995). They hypothesized that early actions represent level-0 choices and
that later actions represent higher-level choices. Based on this assumption, they found
that level-0 behavior did not differ significantly from a uniform distribution. In contrast,
Burchardi and Penczynski (2014) incentivized players to reveal their reasoning by allowing
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a one-time simultaneous exchange of messages between teammates playing a beauty-contest
game. Teams of two simultaneously sent each other a single message containing arguments
in favor of a given action, and then simultaneously chose an action, with the team’s action
being chosen randomly from the two choices. Burchardi and Penczynski then classified
each argument according to level of reasoning, and extracted the level-0 behavior from
both level-0 and higher-level arguments. They found that level-0 play was significantly
different from uniform. Intriguingly, they also found that the level-0 behavior hypothesized
by higher-level players was very similar to the level-0 behavior that was actually proposed.

Hargreaves Heap, Rojo Arjona, and Sugden (2014) evaluated the transferability of level-0
specifications between three games in which all of the actions are strategically equivalent:
a coordination game, a discoordination game, and a hide-and-seek game. They argue that
any level-0 specification based only on the strategic structure of the game must produce
an identical level-0 behavior for each type of game, since in each game each action is
strategically equivalent to every other action. Based on experimental data, they reject
a joint hypothesis that includes an identical distribution of levels for each game and an
identical level-0 action in each game.10 This may indicate that framing effects, in addition
to strategic considerations, play a role in determining level-0 behavior. It may also indicate
that the population distribution of levels varies between games; we are studying this latter
possibility in ongoing work.

The logit level-0 specification of Section 3.3 is widely used for modeling choice behavior
based on features of the possible actions (e.g., Train, 2009). Nguyen, Yang, Azaria, Kraus,
and Tambe (2013) achieved good performance in the security domain with the SUQR model,
which models choice behavior as a logit combination of features such as the coverage of a
target and the penalty/reward arising from attacking a specific target.

6. Conclusions

This paper introduced two specifications of level-0 behavior that dramatically improve the
performance of the level-k, cognitive hierarchy, and quantal cognitive hierarchy models.
These specifications depend only upon the payoffs of the game, and are thus generally ap-
plicable to any domain, even ones in which human intuition gives little guidance about
the level-0 specification. A linear weighting of four nonstrategic binary features—maxmax
payoff, maxmin payoff, maxmax fairness, and max symmetric—improved all three models’
performances, with the weaker models (level-k and cognitive hierarchy) improving the most.
We named this specification linear4. Including either or both of the remaining two binary
features caused models to overfit and prediction performance to decline. Fairness was the
feature with by far the greatest weight. Including real-valued versions of the binary features
further improved prediction performance for all three models. We called this augmented
specification linear8. The weight of the fairness[R] feature was not well identified in this
model, and omitting it (to produce the model we call linear7) did not significantly decrease
prediction performance.

Conventional wisdom in the economics literature is that level-0 agents exist only in the
minds of higher level agents; that is, that a level-0 specification acts solely as a starting

10. They initially assume that no level-0 agents exist as part of their joint hypothesis. However, their results
are robust to the existence of level-0 agents.
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point for higher level agents’ reasoning (e.g., Crawford & Iriberri, 2007b). Our results argue
against this point of view: both the uniform and linear4 specifications estimated that more
than a third of agents were level 0, and the linear8 specification estimated that over half
the population was level 0. These results are strong evidence that nonstrategic behavior
is an important aspect of human behavior, even in strategic settings. Further refining our
understanding of nonstrategic behavior is an important direction for future work, both
in terms of capturing factors that are considered by nonstrategic agents and in terms of
incorporating these factors into predictive behavioral models.
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Pita, J., Jain, M., Marecki, J., Ordóñez, F., Portway, C., Tambe, M., Western, C., Paruchuri,
P., & Kraus, S. (2008). Deployed armor protection: the application of a game theoretic
model for security at the los angeles international airport. In Proceedings of the
7th International Joint Conference on Autonomous Agents and Multiagent Systems:
Industrial track, pp. 125–132. International Foundation for Autonomous Agents and
Multiagent Systems.

Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods. Springer Verlag.

Rogers, B. W., Palfrey, T. R., & Camerer, C. F. (2009). Heterogeneous quantal response
equilibrium and cognitive hierarchies. Journal of Economic Theory, 144 (4), 1440–
1467.

Savage, L. (1951). The Theory of Statistical Decision. Journal of the American Statistical
Association, 46 (253), 55–67.

Stahl, D., & Wilson, P. (1994). Experimental evidence on players’ models of other players.
Journal of Economic Behavior and Organization, 25 (3), 309–327.

Stahl, D., & Haruvy, E. (2008). Level-n bounded rationality and dominated strategies in
normal-form games. Journal of Economic Behavior and Organization, 66 (2), 226–232.

Stahl, D., & Wilson, P. (1995). On players’ models of other players: Theory and experimental
evidence. Games and Economic Behavior, 10 (1), 218–254.

Thaler, R. H. (1988). Anomalies: The ultimatum game. The Journal of Economic Perspec-
tives, 2 (4), 195–206.

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms. In Proceedings
of the ACM Conference on Knowledge Discovery and Data mining (KDD), pp. 847–
855. ACM.

382



Level-0 Models for Predicting Human Behavior in Games

Train, K. (2009). Discrete Choice Methods with Simulation. Cambridge University Press.

Witten, I. H., & Frank, E. (2000). Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann.

Wolpert, D. H., & Bono, J. W. (2013). Predicting behavior in unstructured bargaining with
a probability distribution. Journal of Artificial Intelligence Research, 46, 579–605.

Wright, J. R., & Leyton-Brown, K. (2012). Behavioral game-theoretic models: A Bayesian
framework for parameter analysis. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems, Vol. 2, pp. 921–928.

Wright, J. R., & Leyton-Brown, K. (2014). Level-0 meta-models for predicting human
behavior in games. In Proceedings of the Fifteenth ACM Conference on Economics
and Computation (EC’14), pp. 857–874.

Wright, J. R., & Leyton-Brown, K. (2017). Predicting human behavior in unrepeated,
simultaneous-move games. Games and Economic Behavior, 106, 16–37.

Wright, J. R., & Leyton-Brown, K. (2018). A formalization of the boundary between
strategic and nonstrategic reasoning. Arxiv preprint arXiv:1812.11571.
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